Abstract

In the first century BC the Roman architect Vitruvius dedicated his architectural treatise "De architectura libri decem" to the Emperor Augustus. These ten books summarize the art of building of that time and since then are a reference for the understanding of Western architecture throughout times.

Vitruvius, in his treatise, gathers and preserves for us an immense amount of knowledge about traditional construction. Based on his observations of existing buildings, he explains the construction through a set of canonical formulas which summarize the classic architectural ideal. It is on this work that most of the ideological and philosophical theories of western architecture, from the Renaissance to the present day, are based upon.

Underlying this approach is the belief that harmonious relations in architecture can only be achieved when all the elements of a building, from the shape of the compartments to the openings in the walls, are all in accordance with the proportions of the building and with nature.

Supported on this treatise, we will observe and analyze architectural works of different times aiming to show that architecture is something more than a mere response to a requirement entered in a purely functional building program or an exercise in design and that Vitruvius's theories allowed the establishment of an architectural model whose understanding of the importance of harmony and proportion is still current.

Understanding the role of harmony and proportion in the establishment of an architectural model is the leitmotiv of our investigation. We see as our mission the analysis and subsequent dissemination of this model to the scientific community and the general public, and to promote academic reflection on the importance of harmony and proportion present in the Memory and the Cultural Identity of places as elements able to promote and identify areas for developing a modern architectural language.

Keywords: Architecture; Harmony and proportion; Vitruvius; Architectural theory; Architectural model.